Optimalisasi Sistem Informasi Kepuasan Pelanggan dan Posisi Bersaing PT Sage Mashlahat Indonesia Berbasis Artificial Intelligence Marketing: Hilirisasi Kepakaran Perguruan Tinggi untuk Dunia Usaha
DOI:
10.25047/agrimas.v4i1.57Downloads
Abstract
Kegiatan pengabdian kepada masyarakat ini bertujuan mengimplementasikan hilirisasi kepakaran dalam bidang manajemen pemasaran dan teknologi informasi melalui pengembangan sistem informasi kepuasan pelanggan dan posisi bersaing perusahaan berbasis artificial intelligence (AI) pada PT Sage Mashlahat Indonesia (PT SMI), produsen benih jagung dan padi hibrida. Permasalahan utama yang dihadapi mitra adalah belum tersedianya sistem terkomputerisasi untuk memantau dan mengevaluasi kepuasan pelanggan serta posisi bersaing perusahaan secara real-time. Kegiatan dilaksanakan dalam empat tahap, yaitu pengumpulan database dan analisis, pemodelan AI menggunakan metode backpropagation, implementasi sistem informasi berbasis web, serta diseminasi luaran. Hasil kegiatan menunjukkan bahwa sistem AI yang dikembangkan mampu menampilkan indikator-indikator kunci dalam bentuk visualisasi data yang akurat dan informatif, seperti retensi pelanggan, loyalitas, tingkat rekomendasi, dan keunggulan bersaing berbasis harga, kualitas, dan inovasi. Sistem ini terbukti meningkatkan efektivitas pengambilan keputusan manajemen PT SMI. Selain itu, kegiatan ini memperkuat kolaborasi strategis antara perguruan tinggi dan dunia usaha serta memberi pengalaman langsung kepada mahasiswa melalui keterlibatan dalam program magang industri. Pengabdian ini menunjukkan bahwa integrasi AI dalam sistem informasi perusahaan dapat menjadi solusi strategis dalam meningkatkan daya saing berbasis teknologi.
Keywords:
kecerdasan pemasaran buatan, sistem informasi, kepuasan pelanggan, posisi bersaingReferences
[1] Haenlein, M., Huang, M.-H., & Kaplan, A. (2022). Business ethics in the era of artificial intelligence. Journal of Business Ethics, 178(4), 867–869. https://doi.org/10.1007/s10551-022-05060-x
[2] Chen, Q., Gong, Y., Lu, Y., & Tang, J. (2022). Classifying and measuring the service quality of AI chatbot in frontline service. Journal of Business Research, 145, 552–568. https://doi.org/10.1016/j.jbusres.2022.02.088
[3] Nguyen, D. T., Pham, V. T., Tran, D. M., & Pham, D. B. T. (2020). Impact of Service Quality, Customer Satisfaction and Switching Costs on Customer Loyalty. The Journal of Asian Finance, Economics and Business, 7(8), 395–405. https://doi.org/10.13106/jafeb.2020.vol7.no8.395
[4] Porter, M. E. (2008). Competitive Strategy: Techniques for Analyzing Industries and Competitors. Free Press.
[5] Chui, M., Singla, A., Sukharevsky, A., Gupta, S., Jena, A., Ortaoglu, B., Seitz, B., & Zhang, L. (2023). The state of AI in 2023: Generative AI’s breakout year. McKinsey & Company. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
[6] Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A Conceptual Model of Service Quality and Its Implications for Future Research. Journal of Marketing, 49(4), 41–50. https://doi.org/10.1177/002224298504900403
[7] Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2016). Multivariate Data Analysis (7th ed.). Pearson Education.
[8] Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: A methodology review. Journal of Biomedical Informatics, 35(5–6), 352–359. https://doi.org/10.1016/S1532-0464(03)00034-0
[9] Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university–industry–government relations. Research Policy, 29(2), 109–123. https://doi.org/10.1016/S0048-7333(99)00055-4
[10] Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory (3rd ed.). McGraw-Hill.
[11] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
[12] Sharma, R., Mithas, S., & Kankanhalli, A. (2014). Transforming decision-making processes: a research agenda for understanding the impact of business analytics on organisations. European Journal of Information Systems, 23(4), 433–441. https://doi.org/10.1057/ejis.2014.17
[13] Trilling, B., & Fadel, C. (2009). 21st Century Skills: Learning for Life in Our Times. Jossey-Bass.
[14] FAO. (2022). Digital Agriculture: Building Sustainable and Inclusive Future. Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cb9881en
License
Copyright (c) 2025 Retno Sari Mahanani, Bagus Putu Yudhia Kurniawan, Khafidurrohman Agustianto, Taufik Hidayat, Andarula Galushasti, Ida Adha Anrosana Pongoh, Taufiq Rizaldi

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
